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Abstract —The role of source inductance on the performance of a

distributed amptifier is investigated. A simple theoretical analysis shows

that optimnm performaisce is ohtahred with as low a source inductance as

possible (as wonfd he intuitively expected), and that the flattest gain and

minimum gate fine attenuation occur with the inductance common to the

whole amplifier rather than parceled out to each FET individually, as wonld

oecnr for a MIC dklcribnted amplifier. A novel throngh-the-wafer via hole

process has been developed for a low-inductance contact on monolithic

circuits. A 2-20 GHz variable-gate-width monolithic distributed amplifier

fabricated with this via-hole grounding technique has demonstrated a 2 dB

gain improvement as well as a flatter gain profile compared to that without

via groundhrg. Evidence is presented that indicates that MMIC designs

may not be as ideaf as expected with regard to being typified by the

common inductance case.

I. INTRODUCTION

T HE MAIN EFFECTS of source inductance on the

performance of a distributed amplifier circuit are in-

creased negative feedback and loss in the gate circuit

(g~L~/C,J), which cause gain deterioration with frequency

[1]-[4]. Overall gain is also degraded [5], [6]. A theoretical

study with analytical expressions has been derived to in-

vestigate these two source inductance effects upon “the

performance of the distributed amplifier. Depending upon

how the amplifier grounding is accomplished (i.e., each

FET separately or the amplifier as a whole), it is theoreti-

cally shown that the interstage delay of the distributed

amplifier can be used to flatten the gain while minimizing

the effect of the inductance upon gate-line loss.

With regard to distributed amplifiers, separate ground-

ing of the FET’s would be characteristic of hybrid fabrica-

tion, while common grounding would be expected to typif y

MMIC designs. Experimental evidence is presented, how-

ever, that seems to indicate that the MMIC approach may

be closer to the separate grounding case than would be

expected, thereby compromising the gain performance to

some degree.

A novel through-the-wafer via hole process using the

reactive ion etching technique to form low-inductance

contacts on the MMIC amplifier has been developed [7],

[8]. A 2-20 GHz monolithic distributed amplifier with five
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Fig. 1. Gain simulations (c) of the two FET circuits with interstage
delays for (a) FET’s grounded as a whole or (b) with each FET
grounded separately.

variable-gate-width FET’s has been fabricated to study the

effect of source inductance on the gain performance of the

amplifier. The sources of all FET’s are connected as a

whole and grounded using either ribbon bonding or the

low-inductance via hole grounding. In addition to a flatter

gain performance, the amplifier with via hole grounding

shows 2 dB higher gain than the amplifier with ribbon

grounding;

II. THEORETICAL. ANALYSIS

The negative feedback effect on the distributed amplifier

due to the source inductance is investigated. The analytical

expression of the gain for a simp [e circuit consisting of two

parallel FET’s with transmissiorl lines connected between

the gates and drains of the FET’s (as shown in Fig. l(a))

has been derived as

Y21 2 [2cosO+ uL$g~(2sinO-sin28 )]2+[-2sinO- oL,g~(l-2cos0 +cos26)]2
—

g. 1 + (2g~uL,)2
(1)
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where 8 is the electrical delay of the lumped transmission

IEEE Log Number 8821221. line in degrees and L, is the source inductance. O is given
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Fig 2. Gain simulations of (a) three, (b) four, and(c) five FET circuits
with interstage delays for FET’s grounded as a whole or with each FET
gronuded separately.

by cos 19= 1 – 2( f/fC)2, where ~c is the cutoff frequency of

the lumped transmission line. In this derivation, it is

assumed that Cg, = O (this is to simulate the distributed
amplifier case where the Cg, and Cd, are incorporated into

the 50 Q artificial transmission lines of the amplifier), that

no reflections exist along the transmission lines, and that

the two FET’s are grounded as a whole.

If the two FET’s are grounded separately, as sihown in

Fig. l(b), the gain will be the same as the zero delay case

which is obtained by setting d = O in (l):

Y21 2 4
—

g. 1 + (2@L,gm)2 “
(2)
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Fig. 3. Normalized power consumption (c) of each FET and the sum
of the two FET’s due to source inductance for the circuit shown in (a).
The power is normalized to the power consumption of each FET in the
circuit (b).
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Fig. 4. Gain simntations of a five-FET monolithic distributed amplifier
with FET’s grounded as a whole or with each FET grounded separately
for both low and high source inductances.

Equations (1) and (2) are plotted as a function of 8 in

Fig. l(c). Equation (2) is monotonically decreasing with

increasing frequency. However, (1) oscillates with a period

of 360° between two boundaries, except for a local mini-

mum of magnitude 4[(1 + (oL~gw)2)/(1 + (20 L,g~)2)] at

O = 90°. The two boundaries correspond to the constant
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Fig. 5. Photograph of a five-variable FET distributed amplifier chip.

gain with zero source inductance and (2), respectively. For

larger source inductance, (2) decays faster with frequency,

and the minimum at O = 90° is deeper. For a distributed

amplifier, 13ranges from O to 180° as the frequency ranges

from O to the cutoff frequency ~C (the upper edge of the

amplifier bandwidth).

Supercompact simulation confirms the phenomenon ob-

served in Fig. l(c). The gain simulations for the same

circuits with three, four, and five parallel FET’s, respec-

tively, are shown in Fig. 2. For all four circuits, the gain is

flattened with frequency if the FET’s are grounded to-

gether.

The second effect of the source inductance on the dis-

tributed amplifier is the equivalent gate resistance,

g~L,/C~,. For the two-FET Circuit shown in Fig. 3(b), the
power consumption due to this resistance (for each FET, if

the FET’s are grounded separately) is as follows:

(3)

If the two FET’s are grounded as

power consumption for the two

a whole (Fig. 3(a)), the

FET’s are different, as

shown below (normalized with respect to (3)):

B,(l–2a)
;= A1–—

0 2b

B2(l–2a)
:= A2– —

0 2b

(4)

(5)

where

A;=l–a(l–cos O) Tbsjn O a=u2LC s g$

Bj=b(l–cosd)TasinO b = ugmL~.

However, the total power consumption of these two FET’s

is (normalized to 2P0 )

Pl + P2 l+cose
——<1

2P0 = 2
(6)

which is always lower than the total power consumption

when the two FET’s are grounded separately, as shown in

Fig. 3(c). Therefore, the gate line loss of the distributed

amplifier is less if the FET’s are grounded together rather

than separately. The gWL, value used in Fig. l(c), Fig. 2,

and Fig. 3(c) is 9 x 10- 12/Hz.

Fig. 4 shows the comparison of the Supercompact gain

simulations for a distributed amplifier consisting of five
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Fig. 6. Comparison of the measured gains between the monolithic
distributed amplifiers with via hole grounding and ribbon grounding,

FET’s, with each FET grounded separately or with all

FET’s grounded as a whole. Each simulation includes both

low and high source inductance cases, which correspond to

g~L, values of 9 X 10- 12/Hz and 18X 10- 12/Hz, respec-

tively. It is clear that the gain is flatter for the amplifier

when the FET’s are grounded as a whole, and less rippled

for the lower source inductance case.

This simple analysis thus shows that flatter gain with

minimum gate line attenuation can be achieved with the

source inductance common to the whole amplifier, thereby

allowing partial cancellation of the out-of-phase currents

that flow in the inductor to reduce the virtual size of the

inductance. This is the usual case if the amplifier is real-

ized in MMIC form rather than in a MIC where each FET

in the amplifier is grounded separately with bond leads.

Care must be taken, however, to design the source bus on

the MMIC for minimum inductance and resistance along

its length.

III. EXPERIMENT AND RESULTS

A monolithic distributed amplifier design which consists

of five FET’s with various gate widths and with the sources

of all FET’s grounded as a whole was developed, as shown

in Fig. 5. FET’s with a gate length of 0.5 pm and gate

widths of 90 pm, 140 pm, 160 pm, 173 pm, and 146 pm

were used. Supercompact simulation shows a gain of 7.5

dB and VSWR’S of 1.2:1 of the MMIC amplifier over the

2–20 GHz band.

Low-inductance contacts on the MMIC amplifier are

realized by using through-the-wafer via holes. A novel

process using SiC14/Cl ~ chemistry with a hard-baked

positive resist mask for reactive ion etching of 100-pm-deep
via holes in GaAs is developed. The process produces deep

vias with relatively smooth sidewalls. A high aspect ratio

( -3:1) is maintained, but the walls are sufficiently sloped

to facilitate the subsequent metallization.

This distributed amplifier was fabricated on MBE

material with the choice of using either the low-inductance

via hole grounding or higher inductance ribbon grounding.

In addition to a flatter gain performance, the amplifier

with the via hole grounding has a measured gain of 7.5 +0.5

dB, which is 2 dB higher than the same amplifier with the

ribbon grounding (as shown in Fig. 6).

IV. DISCUSSION AND CONCLUSIONS

A theoretical analysis was done showing the importance

of grounding the FET’s in a distributed amplifier in com-

mon rather than separately. A Supercompact simulation

confirmed these results, as shown in Fig. 4. Separate

grounding of the FET’s would be expected to characterize

the hybrid realization of the amplifier, while the MMIC

realization of the amplifier would be expected to ap-

proximate the common mode if a common source bus line

were utilized.

Although no empirical results were obtained confirming

the improvement of the common mode over the individual

mode (there would be no reason to suspect inaccuracies in

the CAD simulations for such simple circuit differences),

an amplifier run using the common source bus mode

showed significant improvement in both gain and ripple

through the use of vias in place of ribbon grounding at

each end of the bus. This result would be expected because

of the lowered inductance of the vias (Fig. 6). Theory says,

however, that grounding the FET’s in common mode

reduces the sensitivity of the gain to large changes in the

source inductance (as shown in Fig. 4). It may thus be that

the large improvement shown in Fig. 6 is indicative of the

lack of complete realization of the common mode. Indeed,

simple calculations reveal that the FET-to-FET inductance

along the source bus is comparable to the via inductance.

(The common mode analysis assumes that this inductance

is negligible compared to the via inductance, as was also

assumed in the CAD design of the amplifier.)

It thus seems expedient to minimize the source bus

inductance further to improve upon the performance shown

for the via data in Fig. 6. This will not be trivial, because

moving the FETs closer together will raise the via induc-

tance, since their diameter will have to be decreased.
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